Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective

2004 ◽  
Vol 132 (7) ◽  
pp. 1645-1660 ◽  
Author(s):  
Manuel Lonfat ◽  
Frank D. Marks ◽  
Shuyi S. Chen
2016 ◽  
Vol 33 (7) ◽  
pp. 1539-1556 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow ◽  
David L. Randel

AbstractThe Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.


2005 ◽  
Vol 44 (3) ◽  
pp. 367-383 ◽  
Author(s):  
Fumie A. Furuzawa ◽  
Kenji Nakamura

Abstract It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (<5 km), the TMI-RR is smaller than the PR-RR; when it is high (>8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a low storm height predominates in winter or from 0600 to 1500 LT, and convective rain occurs frequently from 1200 to 2100 LT. Result 1 can be explained by results 2 and 3. It can be concluded that the TMI underestimates rain with low storm height over land because of the weakness of the TMI algorithm, especially for convective rain. On the other hand, it is speculated that TMI overestimates rain with high storm height because of the effect of anvil rain with low brightness temperatures at high frequencies without rain near the surface, and because of the effect of evaporation or tilting, which is indicated by a PR profile and does not appear in the TMI profile. Moreover, it was found that the PR rain for the cases with no TMI rain amounted to about 10%–30% of the total but that the TMI rain for the cases with no PR rain accounted for only a few percent of the TMI rain. This result can be explained by the difficulty of detecting shallow rain with the TMI.


1999 ◽  
Vol 8 (2) ◽  
pp. 135-139 ◽  
Author(s):  
Akira Shibata ◽  
Keiji Imaoka ◽  
Misako Kachi ◽  
Hiroshi Murakami

2016 ◽  
Vol 144 (8) ◽  
pp. 2793-2808 ◽  
Author(s):  
Kenneth D. Leppert ◽  
Daniel J. Cecil

Abstract Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10-km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300 and 500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230–0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130–0730 LST).


2015 ◽  
Vol 28 (17) ◽  
pp. 6882-6902 ◽  
Author(s):  
Frank J. Wentz

Abstract The Tropical Rainfall Measuring Mission (TRMM) satellite began operating in December 1997 and was shut down on 8 April 2015. Over the oceans, the microwave (MW) sensor aboard TRMM measures sea surface temperature, wind speed, and rain rate as well as atmospheric columnar water vapor and cloud liquid water. Improved calibration methods are applied to the TRMM Microwave Imager (TMI), and a 17-yr climate record of these environmental parameters is produced so as to be consistent with the climate records from 13 other MW sensors. These TMI retrievals are validated relative to in situ observations over its 17-yr mission life. All indications point to TMI being an extremely stable sensor capable of providing satellite climate records of unprecedented length and accuracy.


2018 ◽  
Vol 35 (12) ◽  
pp. 2339-2358 ◽  
Author(s):  
Anil Deo ◽  
S. Joseph Munchak ◽  
Kevin J. E. Walsh

AbstractThis study cross validates the radar reflectivity Z; the rainfall drop size distribution parameter (median volume diameter Do); and the rainfall rate R estimated from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR), a combined PR and TRMM Microwave Imager (TMI) algorithm (COM), and a C-band dual-polarized ground radar (GR) for TRMM overpasses during the passage of tropical cyclone (TC) and non-TC events over Darwin, Australia. Two overpass events during the passage of TC Carlos and 11 non-TC overpass events are used in this study, and the GR is taken as the reference. It is shown that the correspondence is dependent on the precipitation type whereby events with more (less) stratiform rainfall usually have a positive (negative) bias in the reflectivity and the rainfall rate, whereas in the Do the bias is generally positive but small (large). The COM reflectivity estimates are similar to the PR, but it has a smaller bias in the Do for most of the greater stratiform events. This suggests that combining the TMI with the PR adjusts the Do toward the “correct” direction if the GR is taken as the reference. Moreover, the association between the TRMM estimates and the GR for the two TC events, which are highly stratiform in nature, is similar to that observed for the highly stratiform non-TC events (there is no significant difference), but it differs considerably from that observed for the majority of the highly convective non-TC events.


Sign in / Sign up

Export Citation Format

Share Document